
E-GUIDE / part 1 of 3

Improving Web Performance
in Episerver
June 2018

 info@niteco.com

 niteco.com

How to Improve Web
Performance in Episerver
When it comes to the appeal of a website, nothing beats
good performance. You can have the fanciest presentation
with great visuals, perfect structure, and amazing content
– if your site takes too long to load, nobody will stick
around to see the fruits of your hard work.

Performance is key, and as an Episerver MVP, I know
how to tease all the power out of an Episerver website. In
this three-part E-Guide, I will show you how to do it. I will
explain simple, common-sense approaches to speeding
up your site, tell you where your site can lose considerable
weight, and reveal the little secrets of Episerver’s platform.

02 _ niteco.com Niteco E-guide 2018

EMVP - Linus Ekström, Chief Technology Officer
The 3rd developer of the original team that created Episerver,
Linus is a prominent figure amongst the industry’s
professionals. His greatest strength lies in the combination of
technical knowledge and an eye for the big picture.

03 _ niteco.com Niteco E-guide 2018

Why Web Performance Matters

Causes of Bad Performance

Your website’s performance can make or break your
business. This may sound harsh, but it’s a fact. In 2018,
tolerance for slow web performance among users is at
an all-time low and this trend will continue as more online
transactions are going mobile.

The Kissmetrics blog gives us the bare and sobering
numbers: “A one-second delay in page response can result
in a 7% reduction in conversions. If an e-commerce site is
making $100,000 per day, this could potentially mean a loss
of sales of $2.5 million every year.” The longer a site takes to
load, the more visitors leave for a more responsive one.

According to a survey conducted by the blog, 47% of
consumers expect a site to load in two seconds or less.
Mobile users are a little more forgiving, with one third of
users saying they would wait no longer than ten seconds
for a page to load.

With average page size growing from 929 KB in 2011 to
3034 KB in 2017 and images and videos responsible for
most of this growth, good performance optimization is now
more important than ever. Consumers are getting used to
a richer and more compelling experience with nice images
and, increasingly, video, all the while still expecting to be
able to interact with a site instantly.

The speed of a site results from a combination
of a number of factors. The main causes of slow
performance are:

o Latency

o Server response time

o Parsing of HTML and CSS

o Downloading required assets

o Parsing and execution of JavaScript

o Rendering

Not only can problems in these individual areas
cause delays and slow down performance, they can
actually combine their effects by getting in each
other’s way and increasing load times.

To understand what problems can occur between yourself
and your visitor, it’s important to know what actually
happens when a user visits your site.

When a user enters your URL in their browser or clicks a
link to your site, a request is sent from their device to your
web server. If you do not already know the IP address of
the server, a DNS lookup has to be made before you can
make the request, to get the IP address of the web server.
The server interprets the request and proceeds to collect
all the necessary data from the cache or, in the worst case,
the database. Database lookups are relatively slow, so a
system like Episerver tries to cache as much of the data as
possible to reduce the amount of database roundtrips. For

an Episerver CMS solution with mostly well visited pages,
there should be very little database traffic after the sites
have been warmed up and been able to cache the data.
For Commerce solutions or CMS solutions with lots of
content that might not be that well visited, requests to the
database might be more frequent.

Having retrieved this data, the server sends it to your device
in order to display the requested page in your browser.

Your request accordingly undergoes four journeys, all of
which have their own potential for latency and connection
bottlenecks. If the user is located far away from your
nearest web server, maybe even on the other side of the
world, latency only gets worse.

04 _ niteco.com Niteco E-guide 2018

How Does a Page Request Work?

END USER

Request sent Request received Data fetched

Data received,
rendering begins

Data prepared

SERVER DATABASE

Improving
Your Web Server

Performance
05 _ niteco.com Niteco E-guide 2018

Caching is the temporary storage of content, done in order
to speed up future loading speeds. Theoretically, a request
for data made by the very first visitor to your website would
have to go all the way to your site’s database and retrieve
what you want. As the data is pulled out of the database,
it is delivered to your visitor and stored in different cache
layers at the same time. When the next visitor makes that
same request, the data can be delivered to him from one of
the cache layers, without the need to go to the database.
This saves time in loading the page. Content caching is
done on a per-object basis. This means that even when a
user visits a page that they have not yet visited, objects
that have been used by other pages might still be taken
from the cache, reducing the amount of calls to the
database.

Caching can occur in several places. It can be done per
object in your web application, as output cache with pre-
generated HTML for parts of the page or the entire page, in
a hypothetical CDN, and in your visitor’s browser.

Each asset should have a Cache-Control header, which
says how long the browser can cache the file locally. This
makes subsequent visits to your site much quicker for
that user, since the browser doesn’t have to fetch those
assets again. Assets that don’t change frequently should
be set with a cache time of at least one year. One common
pattern for JavaScript that might change when a new
deployment to the site is made is to add a dynamic part to
the URL, for instance by adding a query string parameter.
This way, you can configure aggressive caching while still
being able to have the browser downloading a new version
as soon as a new deployment is made.

06 _ niteco.com Niteco E-guide 2018

Content Caching

END USER

Request sent Request received,
data found in cache Data retrieved from

database in advance
and stored in cache

Data received,
rendering begins

Data prepared

SERVER DATABASE

CDN stands for Content Delivery Network. If the solution
has a CDN in place, this works as a proxy between the user
and the web servers. A CDN is comprised of a multitude
of nodes, usually placed on the internet backbone. When a
DNS lookup is done on the site, the CDN closest to the user
is returned. All traffic between the user and the site then
effectively goes through the CDN. While this results in a
slight overhead since the traffic needs to pass the CDN, the
benefit is that the CDN can cache a lot of the assets for the
site, for instance images, video, and scripts.

This means that visitors to your site retrieve the necessary
data for loading your page from a server close to them
instead of having to go to your own web server, which may be
geographically located thousands of kilometers away. Reduced
distance means reduced latency, decreasing load times.

By default, Episerver DXC comes with Cloudflare as its CDN
provider. Setting up a Cloudflare service is simple and fast
and can dramatically improve your website’s performance,
especially in areas further away from your web server’s
location, or when your site features a lot of images or video.

Static scripts and images can be stored in the CDN, leaving
connections between the CDN server and your own system
open. Since a CDN acts as proxy in between the user and
web servers, it is very easy to add to existing solutions
without much hassle.

CDNs today are more advanced than they were five years
ago and can even help you with things like optimizing
images. See “Image optimization” in the next edition of this
E-Guide for more.

07 _ niteco.com Niteco E-guide 2018

What Is a CDN and Why Should You Use One?

For an in-depth description of how a CDN works, I recommend this guide: https://www.incapsula.com/cdn-guide/what-is-cdn-how-it-works.html

END USER

Request sent Request received,
data found in cache Data retrieved from

database in advance
and stored in cache

Data received,
rendering begins

CDN SERVER DATABASE

https://www.incapsula.com/cdn-guide/what-is-cdn-how-it-works.html

08 _ niteco.com Niteco E-guide 2018

Your Website Is Your Castle
I like to imagine my sites as a castle, which has many
lines of defense. Essentially, the risk is greater the further
in the enemy gets. Ideally, you don’t want the enemy to
even get near your castle and instead be halted by the
different levels of defense. Similarly, you would want your
users to get what they need in their own browser’s cache.
However, few will be repelled so easily.

Make sure that static assets are cached on the client so
they will not even be requested by the client at all if it has
previously visited the site. Let´s call this border control.
Anyone who passes the border will reach at least as far
as your castle’s moat, your CDN. This will stop quite a
few attackers in their tracks, as you hopefully have all
your most important assets cached in your CDN. This
ensures that new visitors to the site can make use of
requests made by other visitors in the same geographical
region that have previously used the same CDN node.

If the warriors begin to scale your walls, they have
reached your output cache, with which you can send
a pre-processed copy of the requested page, thus
protecting the inner layers. Output caching is basically
storing the HTML for a request so that future visitors can
use this without the server having to re-generate it.

The few that breach your gate and enter your courtyard,
facing your few remaining guards, stand at your last line
of defense, your server cache. This ensures that we can
use content that has been fetched from the database
over and over again, usually until an editor updates the
item or the application is restarted.

If your last valiant fighters have been defeated, i.e. your
server cache doesn’t have the assets needed to fulfill the
request, your inner keep stands defenseless: your database.
Even though databases are increasingly fast, it´s hard to
scale the database, and you want to be sure to avoid as
many requests as possible down to this inner layer.

What I like about this analogy is that while the outer
layers are large and should be able to manage a lot of
requests, there will always be some that need to make
their way down to the database, but if you are able to
handle most requests in each layer, there should be fewer
and fewer requests for each of them. This is optimal,
since the outer layers are better at handling higher traffic
than the inner layers.

Sometimes, caching an entire page is simply not the best way
to go about business, especially when you engage in some
levels of personalization or use other dynamic content like
personal profile information.

To minimize the amount of data to be collected from the
database, you can choose to go for a procedure called
substitution caching or donut caching. With this approach, the
parts of a page that can remain static are put in the output
cache. Smaller parts of the page that need to accommodate
dynamic content – the donut holes in this metaphor – are
generated on the server, individually for each visitor.

The complementary approach is called donut hole caching.
This means that a small part of a page is static – e.g. a
particularly resource-intensive segment of the page - and can
be cached, while the majority of the content is kept dynamic.

Donut caching that is done on the server has one big caveat:
You cannot let the CDN cache the page, since it will always
return the same HTML to all users. However, there are now
CDN providers that enable you to tweak the output with
JavaScript. Another approach could be to fill the holes
with JavaScript on the client. This is a common approach
when using Episerver Perform – personalized product
recommendations.

09 _ niteco.com Niteco E-guide 2018

Donut Caching

NOT
CACHED

Even if you do everything to keep calls from reaching the
database in order to improve performance, some inevitably
have to actually go there. When that happens, you have to
ensure that things go as smoothly as possible.

This means proper indexing, making it easier for the
search process to find exactly what you are looking for
in the database. It requires proper tagging and naming
procedures as well as clean file structures.

It should be mentioned that while Episerver is very good
at caching the published version of a content item, loading
specific versions of an item will be done directly from the
database and the content will be loaded from the database
tables tblWorkContent and tblWorkContentProperty.

While keeping some old versions might be good or even
a requirement for traceability, this comes with a cost.
Specifically, the editorial environment might suffer if you
have a lot of versions, since the data is always fetched
from the database, from the versioned content tables.

We suggest that you keep no more than 10 versions of
any given content item. This will help your database calls
go smoothly and quickly. However, consider adjusting this
number if you offer content in many different languages, as
this can lead to versions stacking up again. A setting of 10
versions for a setup with five languages would mean that a
maximum of 50 versions could theoretically be kept. This
setting can be defined in the administrative interface or
your configuration files.

10 _ niteco.com Niteco E-guide 2018

Indexing and Content Versions

As mentioned before, Episerver is very good at keeping content
objects cached. However, when a new version of an item is
published, Episerver will invalidate the cache for this item for all
server nodes. All servers then have to go to the database to fetch
the new version of said item, though this is done only when the
item is needed by the application. If there are several request being
made in parallel before the data has been successfully loaded from
the database, all requests waiting for this content are put on hold
until the content has been loaded from the database. As long as
the content is relatively fast to load, this should not be a problem.
But if you have lots of traffic and evict content that is needed for
many requests, this might mean that you fill up the request queue
while waiting for the updated content to load.

This can cause a serious chokepoint to be created when all servers
fetch the new version at the same time, specifically if there are
a bunch of items being evicted from the cache at once and if it’s
content that is likely to be included in a lot of client requests. To
labor the castle analogy once more, you are essentially lowering
your bridges and opening all your gates, allowing your inner keep
to remain defenseless. If you have a lot of content being updated
frequently, you might want to consider a strategy to combat this,
like the cache burst strategy explained below, or at least making
sure that updates of content from external systems, like a PIM, are
done outside the hours when the site has the most traffic.

11 _ niteco.com Niteco E-guide 2018

Cache Invalidation

If a content update is not too time-sensitive, e.g. if it can
wait until new data has been loaded, a burst cache update
could be the way to go for you. When an item is evicted
from the cache, the new version of a page is fetched from
the database, and the old version remains available in the
cache until the new content is loaded.

This means that the user never hits a page that is in the
process of being rearranged or would need more time to load.

As soon as the updated version of the page is fully available
in the cache, the old version is deleted and replaced.

Users can then retrieve this new version from the cache
without having to wait for their request to get answered by
the database. Episerver does not support Burst Cache by
default, but there are several Episerver implementations I
know about that use this strategy, since Episerver supports
using standard .NET object caching and eviction strategies.

Burst Cache

12 _ niteco.com Niteco E-guide 2018

13 _ niteco.com Niteco E-guide 2018

Image Optimization
Images account for a major share of data needed to
display a web page. They are what makes sites vibrant,
informative, and fun. They are also what turns the kilobytes
needed to load a page into a serious number of megabytes.
Therefore, optimizing the images used for your site is
imperative, regardless of whether you are using the above-
mentioned lazy load pattern.

When doing image optimization, it’s obviously most
important to keep file sizes small. However, you also need
to offer a certain quality of image if you don’t want your
site to look cheap. Most image optimization software
allows configuration of the quality of the optimized images.

Is a visitor coming from a smartphone? You can use a
smaller picture. Are they on a laptop? You’re going to need
something bigger with good resolution. Are they on a 4K
monitor? Be ready to present them with a crisp image to
show that you know what you are doing. It´s quite common
to configure at least three different image sizes on the site.

Retina displays have their own requirements, meaning you
might want to use an extra version of every image to be shown
on a retina device. Using this approach instead of using one
file for all devices that visit your site will help you keep down
the amount of data that has to be delivered on average.

A commonly used library for .NET-based solutions for
resizing images for different devices is ImageResizer.net.
There are two different pattern on how to resize images:
when an image has been uploaded or when a user first
requests the image with a given device size. While we will
not take a stand for any one of these different approaches,
we can give some guidance on the pros and cons:

Resize on upload

Pros:

o There is no delay when the first user requests the
image and size.

o Can be done on a separate server to offload effect
on the frontend servers.

Cons:

o All versions of an image are created when first
uploaded. While this could (and should) be done
asynchronously to not affect the application and
potentially the user interface, this can have some
negative effects on server performance, especially
when importing a lot of new images, for instance
through a scheduled job.

14 _ niteco.com Niteco E-guide 2018

Image Optimization
Resize on demand

Pros:

o Can delay resizing of images to when they are
actually needed. Some images might never be
used externally.

Cons:

o The first user loading an image with a given size
will suffer a slight delay when loading the image,
since it has to be generated.

See http://imageresizing.net/ for more information. One of
the Episerver Most Valued Professionals, Valdis Iljuconoks,
has actually created an Image Resizer plug-in that
makes it possible to store the generated image variants
in a blob provider, along with the original image: https://
github.com/valdisiljuconoks/ImageResizer.Plugins.
EPiServerBlobReader

Another important thing to know is that certain image file
types need less storage space than others while seeming
no different to the human eye. Take these examples:

PNG – Size 317KB JPG – Size 65KB WebP – Size 35KB

http://imageresizing.net/
https://github.com/valdisiljuconoks/ImageResizer.Plugins.EPiServerBlobReader
https://github.com/valdisiljuconoks/ImageResizer.Plugins.EPiServerBlobReader
https://github.com/valdisiljuconoks/ImageResizer.Plugins.EPiServerBlobReader

15 _ niteco.com Niteco E-guide 2018

Using Modern Image Formats
Though older file formats like JPEG and GIF are still
common on the web, there are newer file variants that
make it possible to reduce file size while still maintaining
the same quality, through better compression algorithms.
WEBP, JPEG XR, and JPEG 2000 are examples of such

formats. Compare the images above to see the differences
in the images. The caveat is that not all browsers support
these formats, so adding support for this on the server
means additional work if you still want to support some
older mainstream browsers, like IE 11.

If you are running Episerver DXC, it comes with Cloudflare
CDN, which has a built-in image optimization function
called Polish. This is a really neat feature that enabls the
swapping of image formats for browsers that support
the format WEBP. When an image is loaded to the CDN,

it will investigate if it can save in file size by converting
the image to WEBP. If it can, subsequent requests to the
image done by browsers that support WEBP will get the
file delivered as WEBP. The neat thing here is that the file
name will still be the same, for instance woman.jpg, but the

16 _ niteco.com

type of the file will be changed in the header of the
response. This means that this can be turned on
without making any changes whatsoever to the
application. Turning this on is as simple as
checking a checkbox if you have access to
the Cloudflare admin UI.

This does not create different image
versions for different sizes, but can
reduce the size of images. By default,
Episerver will configure the quality
setting for image optimization
to 85. This can be changed by
opening a ticket with Episerver’s
hosting. If you want to read
more about Polish, you can
do so here

https://blog.cloudflare.
com/introducing-
polish-automatic-
image-optimizati/

Niteco E-guide 2018

See You
Next Time!

Thank you for reading Part 1 of 3 of our E-Guide.
You will be able to download Part 2 on July 5th.

In the next part of the series, I will tell you about
the benefits of HTTP/2, how you can make sure

scripts are executed smoothly and don’t gum up
the works, and why you should consistently test

the performance of your site.

https://blog.cloudflare.com/introducing-polish-automatic-image-optimizati/
https://blog.cloudflare.com/introducing-polish-automatic-image-optimizati/
https://blog.cloudflare.com/introducing-polish-automatic-image-optimizati/
https://blog.cloudflare.com/introducing-polish-automatic-image-optimizati/

POWERING YOUR
EPISERVER
AMBITION

LONDON _ Niteco Group Ltd.

3 More London Riverside, London, SE1 2RE
United Kingdom
+44 (0) 746 012 2355 | uk.info@niteco.co.uk

HANOI _ Niteco Vietnam Co. Ltd.

C’Land Tower, 14th Floor, 156 Xa Dan II Street
Dong Da District, Hanoi, Vietnam
+84 (0) 243 573 9623 | info@niteco.com

 niteco.com

Niteco E-guide / NITECO1806
© 2018 Niteco Group Ltd.

SAN FRANCISCO _ Niteco Group Ltd.

38505 Bautista Canyon Way, Palm Desert
CA 92260, USA
+1 (0) 415 871 2455 | usa.info@niteco.com

Niteco AB _ STOCKHOLM

Norrtullsgatan 6, 5tr, SE-113 29
Stockholm, Sweden

+46 (0) 700 355 830 | sweden.info@niteco.se

Niteco Vietnam Co. Ltd. _ HO CHI MINH CITY

E.Town Building 1, 2nd Floor, 364 Cong Hoa Street
Ward 13, Tan Binh District, HCM City, Vietnam

+84 (0) 286 297 1215 | info@niteco.com

Niteco Group Ltd. _ SYDNEY

PO Box 868 Rozelle NSW
Australia 2039

+61 (0) 405 208 629 | australia.info@niteco.com

Niteco Group Ltd. _ HONG KONG

36/F, Tower Two Times Square
1 Matheson Street, Causeway Bay, Hong Kong
+84 (0) 128 801 2674 | hk.info@niteco.com

