
E-GUIDE / part 2 of 3

Improving Web Performance
in Episerver
July 2018

 info@niteco.com

 niteco.com

How to Improve Web
Performance in Episerver
When it comes to the appeal of a website, nothing beats
good performance. You can have the fanciest presentation
with great visuals, perfect structure, and amazing content
– if your site takes too long to load, nobody will stick
around to see the fruits of your hard work.

Performance is key, and as an Episerver MVP, I know
how to tease all the power out of an Episerver website. In
this three-part E-Guide, I will show you how to do it. I will
explain simple, common-sense approaches to speeding
up your site, tell you where your site can lose considerable
weight, and reveal the little secrets of Episerver’s platform.

02 _ niteco.com Niteco e-Guide 2018

EMVP - Linus Ekström, Chief Technology Officer
The 3rd developer of the original team that created Episerver,
Linus is a prominent figure amongst the industry’s
professionals. His greatest strength lies in the combination of
technical knowledge and an eye for the big picture.

Frontend
Solutions

03 _ niteco.com Niteco e-Guide 2018

In part 2 of our 3 part Web Performance e-guide series, we look at Frontend Solutions. * Missed part 1? Download it here now.

http://ambition.niteco.com/epi-eguide-june.html

04 _ niteco.com Niteco e-Guide 2018

Load to First Interactive
Metrics like ‘time to first byte’ are good to measure the
loading time for a page, which is basically a combination
of latency and server generation time. However, for many
modern sites that feature a lot of interaction, there is
usually more time being spent on loading and executing
client resources. What your user wants is as short a wait
as possible until they can interact with your page, and this
can be done only once the content in the render critical
path has been loaded and executed.

What you should focus on when reviewing performance
for a solution, therefore, is another metric: Time to first
interactive, describing the time that elapses until your
visitor can actually do something meaningful on your site.
This is the metric your page should be optimized for and it
includes:

1. Loading the page.

2. Parsing the HTML.

3. Downloading required images, JavaScript, and
style sheets.

4. Parsing and executing the JavaScript.

5. Parsing and executing the style sheets.

This optimization is built on one simple foundation: Making
sure more important parts of the page are loaded before
the more insignificant ones. In essence, ensuring that the
data your site needs to become interactive is loaded first.

This also means that parts of your page that might take
significant time to load could potentially be deferred to be
loaded when needed. Examples of this could be to not load
all images on a page before they actually appear on the
user’s screen, or to defer loading inventory from an external
ERP system until after the main page has been loaded. It´s
quite likely that the user will not look at the inventory until
they have at least scanned the main part of the product
page anyway.

The practice of lazy loading can help to
significantly reduce the strain on the client side.
It means that assets, particularly images, to be
loaded for a page are prioritized according to
when the user actually sees them in his browser
window. Initially, only the images at the top of
the page would be loaded, while the ones that
remain below the visual field of the browser are
kept for later. When the user scrolls down, those
assets are fetched as well, meaning that the initial
page load deals with much smaller file sizes. This
approach is particularly useful when applied on
resource-intensive pages. There are a number of
JavaScript libraries that handle this, by keeping
track of the viewport and copying values from
an attribute like data-src to src once the image
gets close to being visible. This pattern can bring
down initial loading times for a page significally,
especially if the page is heavy on imagery. Doing
a web search on “javascript lazy load images” gives
lots of hits to explore for anyone that is interested
in delving deeper into this.

05 _ niteco.com Niteco e-Guide 2018

Lazy Loading

06 _ niteco.com Niteco e-Guide 2018

Loading and Executing Scripts
As a page is busy parsing the HTML, it will encounter scripts,
either declared as inline script or as an external resource
that requires the browser to download the scripts unless
they are already in the cache. If not specified otherwise,
these are considered to be rendering-blocking scripts,
meaning that all other activity is put on hold while the script
is fetched and executed, since it might contain important
information or instructions for the parsing process. This
means that just a small number of scripts which have to
fetched in the middle of rendering can significantly delay the
loading process. When we delve into performance tools later
in this guide, we will talk more about how to detect render
blocking scripts.

There are some simple solutions to lighten this load, which
should be considered best practices. From the Mozilla
documentation about the script element:

async: ”This is a Boolean attribute indicating that the browser
should, if possible, execute the script asynchronously.”

This means that for newer browser versions that support
this attribute, the page execution is not halted because of
the script, meaning a smoother loading process. Dynamically
inserted script using the document.createElement function
is executed asynchronously by default, unless specifically
amended with the async attribute set to false.

Another option is the defer attribute, which sets the script to
be executed only after the page has finished parsing. This is
especially useful for scripts that aren’t actually needed for
the page to work, for instance page tracking scripts.

Once again looking at the Mozilla documentation:

“This Boolean attribute is set to indicate to a browser that the
script is meant to be executed after the document has been
parsed, but before firing DOMContentLoaded. Scripts with the
defer attribute will prevent the DOMContentLoaded event from
firing until the script has loaded and finished evaluating. To
achieve a similar effect for dynamically inserted scripts, use
async=false instead. Scripts with the defer attribute will execute
in the order in which they appear in the document.”

As part of a link element, a preload value for the rel attribute
can also substantially shorten the parsing process by
starting to load scripts very early in the process. It is an
instruction to load important resources right from the start
of the page loading process. This ensures that they are
fetched and ready to execute when the parsing procedure
reaches them, meaning you don’t have to wait for parsing
to continue while the script is fetched. You can read more
about the possibilities of the preload value here: https://
developer.mozilla.org/en-US/docs/Web/HTML/Preloading_
content

https://developer.mozilla.org/en-US/docs/Web/HTML/Preloading_content
https://developer.mozilla.org/en-US/docs/Web/HTML/Preloading_content
https://developer.mozilla.org/en-US/docs/Web/HTML/Preloading_content

HTTP1, which until today has been the standard for
sending web pages, was released in 1997. HTTP2,
which was released in 2014, comes with a number of
much-needed improvements.Support in browsers, web
servers, and other parts of internet infrastructure is now
established. Adapting your website to use version 2 of
what is arguably the internet’s most important protocol
is a no-brainer. There are no real drawbacks to using it,
since all major browsers support it and those that don’t will
revert to using HTTP/1.1 anyway. There are also a lot of

performance improvements inherent in the protocol.

First and foremost is multiplexing, which fixes one of the
biggest issues of HTTP/1.1. The old version of the protocol
only allowed one request to be handled per connection,
which resulted in a long queue of resources to be fetched
from the server. Browsers tried to get around this problem
by opening multiple connections at once, from two to eight,
depending on the browser. Under this method, a standard
load looked like this:

07 _ niteco.com Niteco e-Guide 2018

Using HTTP/2

08 _ niteco.com Niteco e-Guide 2018

As we can see, once the page has loaded and parsing
begins, a number of requests are being made almost in
parallel. However, once the browser limit for requests
per domain has been reached, additional assets to be
downloaded have to wait their turn, with the added
problem of the time it takes to open a new connection,
especially when HTTPS is involved. Only when an asset is
returned from the server can the browser make additional
requests.

A quite usual pattern to mitigate this problem has been
to separate assets on different domains; for instance,
mysite.com would have the additional domains static1.

mysite.com and static2.mysite.com. While this enables
the browser to start downloading more assets in parallel,
it comes with a cost, since there need to be more
connections and additional DNS lookups have to be
made.

With multiplexing, a single connection can handle
multiple requests and responses at once. This means
that the browser can request the download of an asset
as soon as it finds it, without having to wait for an open
connection. In this case, the loading process looks more
like this:

We see that all assets are downloaded immediately, as
soon as they are found. We also see that the loading
process is much faster as a result. The difference can be
particularly large in scenarios with lots of small assets
and higher latency, since the browser will have to wait for
assets to be sent over the internet.

Script Bundling

A common best practice has been to keep JavaScript files
separate when developing, but to bundle them into one or
more larger files in production. This reduces the amount
of downloaded assets that the client needs to request.
This can even be applied to external scripts to even further
reduce the amount of downloads to the page. This had
a large impact on sites with a lot of script files running
HTTP1. However, the downside to this is that a change to
one small file could evict a larger bundle from the cache,
since the user needs to download the entire bundled file to
get the update to the changed script file.

How does this apply when using HTTP2? As multiple small
files can be sent over the same connection, you might
think that you should skip bundling altogether, since not
all files in a bundle might be needed by a user and it would
avert the problem of evicting more than the changed file
when a change has been deployed. However, it turns out
that a file has a certain overhead when being downloaded,
meaning that lots of smaller files might not be ideal. My

recommendation would be to create a few bundles, for
instance one for a script framework (for instance React.
js), one for your commonly used scripts, and potentially
also one or more for scripts that are only used for certain
pages. However, it all depends on your solution as well as
the user base.

Be aware that the implementation of HTTP/2 requires you
to also enable HTTPS and SSL. This is not stated in the
protocol’s specifications, but is required by the browsers
actually supporting the newer version of the protocol. You
can see a nice visual simulation of HTTP1 vs HTTP2 on the
website https://www.httpvshttps.com/, showing that HTTPS
can actually make the loading process much faster.

09 _ niteco.com Niteco e-Guide 2018

https://www.httpvshttps.com/

With E-commerce sites being much more
reliant on data pulled from the database,
there are potential issues that will arise more
frequently on an E-commerce site than on a
traditional CMS site. With extensive product
catalogues that need to be updated regularly
and presented to users in varying fashion,
database calls mount up substantially. In this
version of the e-guide, we will not delve into
Episerver Commerce that much, but I would
like to highlight the serializable carts feature.

In a recent update, Episerver also introduced
serializable carts, which store a user’s
shopping cart as JSON, potentially improving
performance significantly.

o https://world.episerver.com/blogs/
Son-Do/Dates/2017/1/introduce-
serializablecart-mode/

o https://world.episerver.com/blogs/
andreas-j/dates/2017/6/benchmarking-
episerver-serializable-carts2/

10 _ niteco.com Niteco e-Guide 2018

E-Commerce Specifics

How to measure performance

In order to improve your site’s performance, you need to
find out how your site currently performs. Once this has
been done, you can start prioritizing and improving the site.
To check the performance of a site, there are a number of
tools that focus on testing from an end user’s perspective.
We will delve into server performance tools later.

We can group these into two kinds of monitoring tools that
can help give you an overview of how a user perceives your
site*. Passive tools are used to manually test performance,
active tools automatically monitor performance.Some
of the most well-known passive tools are Web Page Test
and Google Lighthouse, both of which give you a clean
overview of their test results.

*Actually, the tools will give you a lot of measurements which
will give you a good idea of how the user will perceive the site,
but this can never replace real end-user testing.

Web Page Test

Webpagetest (https://www.webpagetest.org/) is a free
online tool that makes it possible to run performance
test on any publically available site. The tool, which is
sponsored by industry companies, like CMS and CDN
vendors, makes it possible to test the performance of a site

from any of a large range of nodes around the world. You
can select the browser you want to simulate as well as set
the download speed. This is great, for instance when you
want to test how a global site performs in different areas
of the world. You can save the link to a test that you run
and share it with others, and the tool churns out lots of
good information, for instance performance breakdowns
and recommendations, as well as videos showing how
the site load works. The tool runs tests against the URL
three times by default, to be able to check for variations
in performance, for instance if the first request requires
additional things, like loading content from the database or
triggering image resizing on demand on the first request.

Pros:
o Free and easy to use.
o Relatively easy to learn.

Cons:
o Since the tool is free, there can sometimes be a queue

of requests to their servers, meaning that it might
take a little time until you can see your results.

o You need to actively run the tool and save any
performance measurements that you want to use
to compare performance over time.

o You can only run it on publically available domains,
which might prevent you from accessing an
internal site or a test or staging environment.

11 _ niteco.com Niteco e-Guide 2018

Performance Testing

https://www.webpagetest.org/

12 _ niteco.com Niteco e-Guide 2018

13 _ niteco.com Niteco e-Guide 2018

Google Lighthouse

Google Lighthouse is a free extension to Google Chrome that makes it possible to track a request being made through
the browser. Though this means that it is connected to how the Google Chrome browser behaves, it gives a lot of valuable
insight. I usually run this tool when improving a site, since it makes it possible to undergo the test-and–improvecycle in an
easy way in a local development environment. https://developers.google.com/web/tools/lighthouse/

https://developers.google.com/web/tools/lighthouse/

14 _ niteco.com Niteco e-Guide 2018

Speedcurve

The active tool Speedcurve offers automatic tracking using a private cloud network of Web Speed Test servers. Though
the tool includes a lot of nice features, the most obvious and easy to use is to automatically track performance over time.
This is great, since it enables you to always keep an eye on the most important tracking measurements. Perhaps a new
release made the site faster, or worse, slower. You can even configure performance budgets and fire off alarms when the
performance is not up to the standards you have defined. There are several performance measurements to choose from.
With its API, it also enables custom tracking. https://www.speedcurve.com

https://www.speedcurve.com

15 _ niteco.com Niteco e-Guide 2018

New Relic

New Relic is a professional tool
that is currently included in
Episerver DXC (though it is being
replaced with Application Insights
sincethe Spring 2018 Episerver
Ascend events). It includes lots of
functionality, for instance:

o Active end user performance
tracking (similar to Speedcurve).

o Infrastructure health monitor
checking, which enables you
to see CPU and memory for
the application and database
servers.

o The ability to see the controllers
taking up the most time and to
drill down into these to see which
code takes the longest time to
execute.

o List of most occurring errors.

o Email notification when the
application does not perform
well.

The New Relic license model is separated into several different parts, so you
can choose to only use the Application Monitoring tool.

Screenshot showing the response time overview view in New Relic.

In part 3 of our e-Guide, we will tell you where to get started when you’ve decided
to work on your website’s performance. In addition, we show you a real-life
example of what good performance tuning can do.

POWERING YOUR
EPISERVER
AMBITION

LONDON _ Niteco Group Ltd.

3 More London Riverside, London, SE1 2RE
United Kingdom
+44 (0) 746 012 2355 | uk.info@niteco.co.uk

HANOI _ Niteco Vietnam Co. Ltd.

C’Land Tower, 14th Floor, 156 Xa Dan II Street
Dong Da District, Hanoi, Vietnam
+84 (0) 243 573 9623 | info@niteco.com

 niteco.com

Niteco E-guide / NITECO1807
© 2018 Niteco Group Ltd.

SAN FRANCISCO _ Niteco Group Ltd.

38505 Bautista Canyon Way, Palm Desert
CA 92260, USA
+1 (0) 415 871 2455 | usa.info@niteco.com

Niteco AB _ STOCKHOLM

Norrtullsgatan 6, 5tr, SE-113 29
Stockholm, Sweden

+46 (0) 700 355 830 | sweden.info@niteco.se

Niteco Vietnam Co. Ltd. _ HO CHI MINH CITY

E.Town Building 1, 2nd Floor, 364 Cong Hoa Street
Ward 13, Tan Binh District, HCM City, Vietnam

+84 (0) 286 297 1215 | info@niteco.com

Niteco Group Ltd. _ SYDNEY

PO Box 868 Rozelle NSW
Australia 2039

+61 (0) 405 208 629 | australia.info@niteco.com

Niteco Group Ltd. _ HONG KONG

36/F, Tower Two Times Square
1 Matheson Street, Causeway Bay, Hong Kong
+84 (0) 128 801 2674 | hk.info@niteco.com

